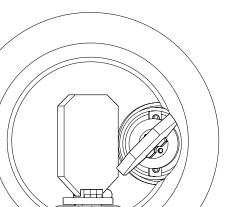


Compact Design. Modular Usage. Straightforward Integration.

Der fiberSYS ist ein 3D-Scan-System für Laser mit bis zu 2 kW Leistung. Er basiert auf einem driftarmen XY-Scan-Modul und einer schnellen, präzisen Z-Achse. Der fiberSYS bietet ein kompaktes, abgedichtetes Gehäuse mit direktem Faseranschluss. Damit lässt er sich leicht und schnell in Laserbearbeitungsmaschinen einbauen.

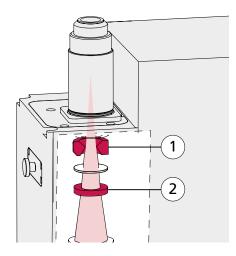

Bei Mehrkopfanwendungen erlaubt der schmale Footprint des fiberSYS einen maximalen Überlapp der Bildfelder und der Anwender profitiert von einer Produktivitätssteigerung der Maschine.

Key Features:

- Modulares, kompaktes 3D-Scan-System mit integrierter Z-Achse
- SCANahead-Regelung (optional Vektor-Tuning)
- Maximaler Bildfeld-Überlapp in Mehrkopfanlagen
- Driftarme Galvonometer-Scanner dank digitaler Encoder
- Optimiert für bis zu 2 kW Single-Mode-Laser
- Schnittstelle für Prozessüberwachung

Typische Applikationen:

- Additive Fertigung
- Laserschweißen
- Elektro-Mobilität
- 3D-Applikationen



Optimale Integrierbarkeit

- Strahlführung ab Faseradapter komplett integriert, inklusive Z-Achse
- Effiziente Wasserkühlung von Galvanometer-Scannern, Elektronik und Strahleintrittsblende
- Flexible Montagemöglichkeiten: Ober-, Unter-, Stirnseite
- Gekapselter Optikpfad in einem staubund spritzwasserdichten Gehäuse (IP-Schutzklasse 64)
- Verwindungssteifer Grundkörper für eine hohe Lagestabilität der Sub-Module zueinander
- Wechselschutzglas auf Strahleintrittsseite zur Verhinderung von Verschmutzung beim Faserwechsel

 Adaption an verschiedene Laser durch Austausch von Blende (1) und Aufweitungslinse (2) möglich. Die äußeren Abmessungen und Schnittstellen bleiben dabei identisch.

Zustands- und Prozessüberwachung

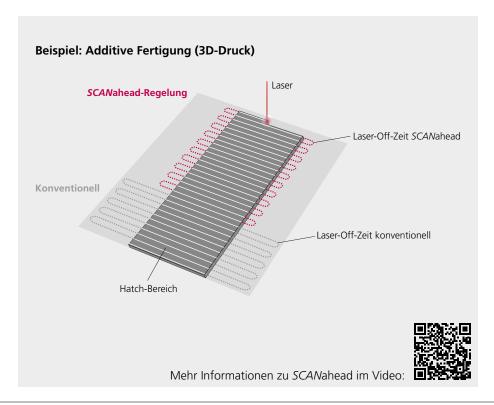
- Optomechanische Schnittstelle für koaxiale Prozessüberwachung
- Hohe Transmission in breitem Wellenlängenbereich
- Individuell an Sensorkonzept anpassbar
- Erfassung aller wichtigen Zustandsgrößen in Echtzeit (iDRIVE-Technologie)
- Scan-Spiegel-Überwachung durch berührungslose Temperatur-Sensorik

Optionale Erweiterungen:

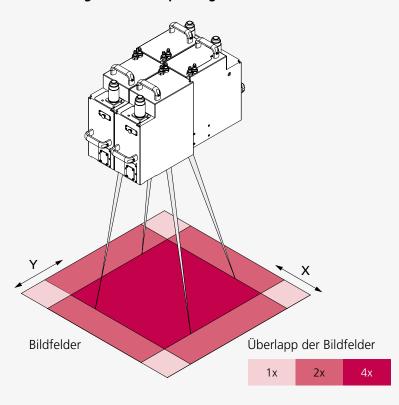
- Open Interface Extension (OIE): Synchronisation von Sensor- und Positionsdaten für ortsaufgelöste Messungen
- Strahlteilerwürfel zur gleichzeitigen Anbindung verschiedener Sensoren, z.B. Pyrometer, Kamera und/oder OCT-Sensor

Faseranschluss

Wechselschutzglas


Prozessüberwachungsport mit Strahlteilerwürfel

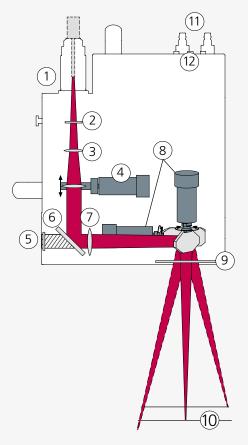
SCANahead-Regelung


Mit der SCANahead-Regelung beschleunigt der fiberSYS unabhängig von der Scan-Geschwindigkeit immer maximal. Das Dynamik-Potenzial der Galvos wird dabei vollständig ausgenutzt.

In der additiven Fertigung werden flächige Strukturen typischerweise durch bidirektionales Hatching realisiert. Ein Großteil der Prozesszeit wird bei Scan-Systemen mit konventioneller Regelung für die Umkehrzeiten für Beschleunigungsund Abbremsvorgänge benötigt.

Der fiberSYS mit *SCAN*ahead-Regelung reduziert diese Umkehrzeiten signifikant und trägt daher zu einer deutlichen Steigerung der Produktivität bei.

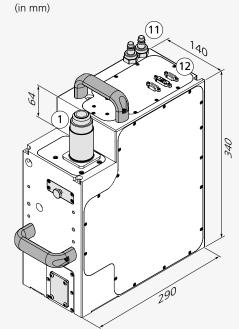
Erweiterung zur Mehrkopfanlage: Hohe Produktivität durch maximalen Bildfeld-Überlapp


Systemvorteile

- Galvobasierte Z-Achse erlaubt schlanke Bauweise, dadurch enge Aneinanderreihung von 3D-Scan-Systemen (in X-Richtung) möglich
- Dichtere Packung (in Y-Richtung) als für Standard-Systeme durch optimierte Galvanometer-Anordnung
- Unterstützung bei der Scan-Feld-Kalibrierung durch das CalibrationLibrary-Software-Paket (optional)

Anwendervorteile

- Kürzere Produktionszeit durch simultane Bearbeitung eines Bauteils mit mehreren Lasern
- Höhere Produktivität durch parallele Prozesse in gegebener Prozesskammer
- Optimierter ,Duty Cycle' von Laser und 3D-Scan-System durch flexiblen Einsatz der verfügbaren Laser im gesamten Baufeld


Funktionsprinzip

Legende

- 1 Faseradapter
- 2 Wechselschutzglas
- 3 Aufweitungslinse
- 4 Galvanometer-Scanner Kollimationsoptik und Z-Achse
- 5 Anschluss zur Prozessüberwachung mit Schutzglas
- 6 Umlenkspiegel
- 7 Vorfokussieroptik
- Galvanometer-Scanner mit digitalen Encodern
- 9 Schutzglas
- 10 Fokusebene
- 11 Kühlwasseranschlüsse
- 12 Elektrische Anschlüsse

Abmessungen

fiberSYS - Vorläufige Spezifikationen

(alle Winkelangaben optisch)

Typische optische Konfigurationen (1)

Bildfeldgröße [mm²]	450 x 450	550 x 550	650 x 650
100% Überlapp pro Bildfeld [mm²]	308 x 323	408 x 423	508 x 523
2x2 Scanner			
Freier Arbeitsabstand von	495	615	730
Unterkante Scan-System [mm]			
Rayleighlänge [mm]	1,8	2,6	3,5
Durchschnittlicher Fokusdurchmesser	55	65	75
im Bildfeld [µm] (2)			
Defokus-Durchmesser [µm]	ca. 200 – 250	ca. 200 – 250	ca. 200 – 250

Kollimation

	Konfig. 1	Konfig. 2
Begrenzende NA	160 mrad	224 mrad
(Vollwinkel)		
Kollimationsbrennweite	190 mm	135 mm
Typ. Strahldivergenz	100 mrad	140 mrad
(Vollwinkel, 1/e²)		
Faserdurchmesser	14 µm	10 µm
Dia nassanda Kanfiguratia	n araibt sisl	م ماریجمام

Die passende Konfiguration ergibt sich durch den eingesetzten Laser. Weitere Konfigurationen auf Anfrage.

Allgemeine Spezifikationen

Apertur	30 mm
Wellenlänge	1060 – 1085 nm
Max. Laserleistung (3)	2 kW
Wellenlängenbereich bei Prozessüberwachung ⁽⁴⁾	800 – 870 nm und 1450 – 2000 nm
Stromversorgung	48 V DC max. 5 A
Maße LxBxH in mm (5)	290 x 140 x 340
Schnittstelle	SL2-100
Anforderungen Wasserkühlung	3 l/min Δp < 4,5 bar Kühlmittelbenetz- tes Material: Aluminium
IP-Schutzklasse	IP 64
Gewicht	ca. 20 kg

Präzision & Stabilität

Wiederholgenauigkeit (RMS)	<0,4 µrad	
Positionsauflösung	20 Bit	
Nichtlinearität (6)	<0,5 mrad	
Dither	< 1,6 µrad	
Temperaturdrift		
Offset	< 25 µrad/K	
Gain	< 8 ppm/K	
Langzeitdrift		
8-StdDrift (nach 30 Min.)	(7)	
Offset	< 30 µrad	
Gain	< 30 ppm	
24-StdDrift (nach 3 Std.)	(7)	
Offset	< 30 µrad	
Gain	< 30 ppm	

Dynamik

Prozessgeschwindigkeit (8)	17 m/s	
Beschleunigung	130.000 rad/s ²	
Sprungantwort (9)		
1% Vollausschlag	0,47 ms	
10% Vollausschlag	1,54 ms	
Schleppverzug	0 ms	
XY-Sub-Modul		
Schleppverzug	<0,84 ms	
Z-Achse		

- (1) Andere Konfigurationen auf Anfrage
- $^{(2)}$ Bei z=0, M^2 =1,05, typ. Strahldivergenz
- (3) Abhängig von der kundenspezifischen optischen Konfiguration
- ⁽⁴⁾ Andere Wellenlängen auf Anfrage
- (5) Maße ohne Faseradapter, Haltegriffe und Steckverbindungen
- ⁽⁶⁾ Bezogen auf 0,77 rad
- ⁽⁷⁾Bei konstanter Umgebungstemperatur und Belastung
- $^{(8)}$ Bei einem Bildfeld von 550 imes 550 mm 2

Optionen

Erweiterungen zur Prozessüberwachung

- Synchronisation der Sensordaten mit RTC-Daten durch Open Interface Extension (OIE) möglich
- Zusätzlicher Überwachungsport durch Strahlteilerwürfel

Umlenkspiegel (Varianten)

- HR-Spiegel für den Laser
- Dichroitischer Strahlteiler zur Prozessüberwachung

Faseradapter

- QBH/HLC-8
- QD/LLK-D

Mehr Informationen im fiberSYS-Video:

10/2025 Änderungen vorbehalten. Produktfotos und Abbildungen sind unverbindlich und können Sonderausstattungen enthalten.

⁽⁹⁾ Ausgeregelt auf 1/1000 Vollausschlag