

# 快速指南 laserDESK 版本 V1.6



SCANLAB GmbH Siemensstr. 2a 82178 Puchheim 德国

电话: +49 (89) 800 746-0 传真: +49 (89) 800 746-199

> info@scanlab.de www.scanlab.de

#### © SCANLAB GmbH 2022

(文档修订版 1.14.0 zh-CN - 2022 年 7 月 13 日) SCANLAB 保留修改本文档信息的权利,恕不另行通知。 未经 SCANLAB 书面许可,不论出于何种目的,均不得以任何电子或机械形式(影印、印刷、微电影或其他任何途径)对该手册 的任何部分进行处理、复制或分发。 所有提到的商标都是各自公司的注册商标。



# 目录

| 4      | 符入                |                                                   | л   |  |
|--------|-------------------|---------------------------------------------------|-----|--|
| ÷.,    |                   | Ллт <i>а И</i> -г. II.                            | 1   |  |
|        | 1.1               | · ]] 建作业                                          | 4   |  |
|        | 1.2               | 执行作业                                              | 4   |  |
| 2      | 安装                |                                                   | . 5 |  |
|        | 2.1               | 供货范围                                              | 5   |  |
|        | 2.2               | PC 和系统要求                                          | 5   |  |
|        | 2.3               | 安装 laserDESK                                      | 6   |  |
|        | 2.4               | 分配读写权限                                            | 6   |  |
| 3      | 启动软件              |                                                   |     |  |
| Ŭ      | 3.1               | 平口<br>用户界面 (GUI)                                  | 7   |  |
|        |                   |                                                   |     |  |
| 4      | 刨建                |                                                   | . 8 |  |
|        | 4.1               | 作业结构                                              | 8   |  |
|        | 4.2               | 创建和编辑标记对象                                         | 8   |  |
|        | 4.3               | 分配标记参数                                            | 10  |  |
|        | 4.4               | 分配填充参数                                            | 11  |  |
|        | 4.5               | 插入控制元素                                            | 11  |  |
|        | 4.6               | 创建变体                                              | 12  |  |
|        | 4.7               | 创建符号                                              | 12  |  |
|        | 4.8               | 管理作业                                              | 13  |  |
| 5      | 执行                | 作业                                                | 14  |  |
| 6      |                   |                                                   |     |  |
| 0      | HLL.              |                                                   | 15  |  |
|        | 6.1               | び直                                                | 15  |  |
|        | 6.2               | 测试参数设直                                            | 17  |  |
|        | 6.3               | 补允切能                                              | 18  |  |
| 7      | 使用                | 库                                                 | 19  |  |
| 8 特殊功能 |                   | 20                                                |     |  |
|        | 8.1               | <b>3D</b> 功能                                      | 20  |  |
|        | 8.2               | 申动机控制轴                                            | 21  |  |
|        | 8.3               | 平辅                                                | 21  |  |
|        | 8.4               | 元程控制                                              | 22  |  |
| ~      | инани.<br>Нистина | で Franker And |     |  |
| Э      | 成本                | - 史初州 <b>广</b> 级                                  | 23  |  |
|        | 9.1               | 版本/切能氾固                                           | 23  |  |
|        | 9.2               | 更新和升级                                             | 24  |  |
|        |                   | 升级软件狗                                             | 24  |  |
|        |                   | 安装新的 laserDESK 软件                                 | 24  |  |



# 1 简介

您可以使用 laserDESK 软件包来创建可通过激光扫描 系统执行的激光标记和材料加工程序(作业)。用户 友好界面 (GUI) 不仅提供对所有功能的访问,还有助 于您设置和控制系统的硬件组件。

## 1.1 创建作业

创建 laserDESK 作业需执行以下步骤:

- 对您的应用(例如,标记、切割、焊接轮廓等)
  定义标记对象和图案。其中可能包括几何形状、文本、图形等等。
- 定义任何所需的参数集。影响激光与扫描器行为的标记参数始终必填。所填充的标记对象需要附加填充参数,而(光栅化)像素图像需要附加像素图像参数。
- 定义标记工作流。为此,您可插入控制元素,以在 定义点及时调节处理流及安装硬件。

每个 laserDESK 作业均存储于各自的独立文件中,并 且包含上述信息(包括己定义的所有参数集)。需要 某些标记对象和参数集的作业可能不止一个。为了避 免每次都重新定义这些对象和参数集,您也可将它们 导出到某个库。此后,您便可将其从此处导入其他作 业。laserDESK 软件包附随提供了默认参数集。

## 1.2 执行作业

作业执行模式分为两种:手动和自动。

- 在手动模式中,您需要通过 laserDESK 用户界面 启动作业。有时,此模式会很有帮助;例如,在应 用的开发阶段中,当您希望以迭代方式确定最佳标 记参数时。外部启动信号将被忽略。
- 自动模式适用于生产环境中的作业。在此模式中, 通过外部输入信号,以独占方式启动和控制作业, 而且不允许作业变更。

首次执行作业之前,或者更换硬件之后,需要对硬件 组件的配置设置硬件参数(见下文)。laserDESK 软 件的功能可帮助您确定或定义其中部分参数。



## 2 安装

### 2.1 供货范围

完整的 laserDESK 软件包以 CD 形式提供

- 一张 CD: 含有
  - laserDESK 64 位程序,包括帮助文件
  - 适用于 Microsoft Windows 8 和 Windows 10 操 作系统的软件驱动器
- 一个 USB 加密狗 (软件保护插头):以全模式运行 laserDESK。

该软件也可以从 SCANLAB 主页下载。

如果您要为此目的购买加密狗,请联系 SCANLAB。

### 2.2 PC 和系统要求

- 64 位操作系统: Microsoft Windows 8 或 Windows 10 (具备 Framework 4.5)。
- 所需硬盘空间:
  大约 350 MB (包括帮助文件)
- USB 软件狗: 如果您希望运行具备完整功能的 laserDESK 程序 (即不只是演示模式),您需要有效的 USB 软件狗 (软件保护设备),否则,只能使用演示模式。在 这种模式中,既不能保存内容,也无法控制硬件。 而且,无法执行激光作业。 此外,软件狗的配置将会定义 laserDESK 的功能

范围(请参阅第23页上的第9章)。

• SCANLAB RTC5 卡或 RTC6 卡:

只有当控制激光扫描系统的电脑(生产用电脑) 能够对 RTC5 卡或 RTC6 卡进行寻址时,才能执行 laserDESK 作业。

仅当在 RTC 板上激大活对应的选项后,才能使用 某些功能 (如飞行加工)。

然而,在创建作业时并不需要 RTC 板。因此,可 在任何 PC (即使不具备 RTC 板)上创建作业, 再到生产 PC (具备 RTC 板且安装了 laserDESK 软件)上执行这些作业。



## 2.3 安装 laserDESK

#### 注意

- 安装 laserDESK 软件之前,请在 SCANLAB 网页 上检查是否有更新。
- 即使不具备软件狗和 RTC PC 接口板,也可安装 laserDESK 软件。
- 如果使用安装 CD 来安装 laserDESK,请将此 CD 插入 PC 驱动器。"安装向导"随即自动启动。
- 或者,运行软件包中的
  "laserDESKx64\_installer.exe"。
- 安裝过程随后通过 Windows Installer 自动继续。 按照向导说明安装 laserDESK。
- 安装之后,系统管理员必须向每位用户分配所需的 读写权限(访问授权,见上文)。
- 最后,将所提供的软件狗插入将要以完全模式运行 laserDESK的PC(即具备或不具备RTCPC接口 板的PC)的任意USB端口。

## 2.4 分配读写权限

安装 laserDESK 之后,必须向每位 laserDESK 用户分 配写和/或读权限。由于该程序的安装例程无法分配 写或读权限,因此客户的系统管理员必须确保 laserDESK 程序用户获得所需的写和/或读权限(具 体取决于各自 laserDESK 访问授权级别):

- 具备 laserDESK"管理员"、"主管"或"设计人员" 访问授权的用户必须获得 laserDESK 程序目录的 读写权限,此目录通常为"C:\ProgramData\ Scanlab\SLLaserDesk\"(包括子目录)。
- 其他所有用户(具备"生产"和"查看人员"访问 授权)只需要"C:\ProgramData\Scanlab\
   SLLaserDesk\"目录(包括子目录)的读权限。



# 3 启动软件

laserDESK 可按如下方式启动:

- 直接打开 "SLLaserDesk.exe" 程序文件,或者通过 链接或图标打开。 当程序窗口打开时,将自动创建新作业。此时,用 户界面还没有标记对象。
- 通过右键单击或双击,打开作业文件 ([作业名称].sld)。程序窗口随之显示任何已创建的标记对象。

## 3.1 用户界面 (GUI)

laserDESK 的窗口和菜单 / 状态 / 符号栏遵循公认的 MS Windows 惯例。用户界面的主要组件分为用于创 建和编辑标记对象的工作区域以及用于编辑设置的" 作业资源管理器"、"库资源管理器"和"属性"可停 靠窗口。这些窗口及其他所有可停靠窗口均可按需进 行显示、隐藏或排列。

大多数功能的访问可通过菜单、符号栏按钮或鼠标右 键(上下文菜单)实现。此外,还可显示一个工具 栏,其中包含要插入作业的标记对象和控制元素。

可根据用户任务(创建、测试、执行)选择不同的 GUI 配置文件:设计配置文件、测试配置文件、导引 激光配置文件或生产配置文件。在这些配置文件中, 将显示所需的窗口,不过您也可对这些窗口进行任意 更改。

可以通过 **<F1>**键调用上下文敏感的在线帮助。这是 在标准浏览器中显示的。

某些 laserDESK 用户界面设置可通过 "GUI 设置"对 话框进行自定义,包括显示颜色、网格和线、GUI 语 言、用户组和密码。对于 laserDESK 库管理所使用的 目录,也同样如此。



# 4 创建作业

可通过任意 PC 上的 laserDESK 创建作业(即使该 PC 不具备 RTC 板)。 laserDESK 在启动时会自动创 建新作业。要进一步编辑现有作业([作业名称].sld),请通过菜单或"打开文件"按钮将其打开。

一次只能打开一个作业。如果您的生产需要不同的标记操作,则可将其集成到一个由变体 (部分作业)组成的作业中,如下所述。

要创建 laserDESK 作业,需要定义标记元素和要使用的图案。应用可能涉及标记、切割、焊接轮廓等。

## 4.1 作业结构

作业资源管理器将显示一个由所打开作业元素构成的 结构树 (包括所有标记对象和控制元素)。此结构树 将自动列示任何新建的标记对象和新插入的控制元 素。您随时可以通过结构树中的位置,设置或更改标 记对象、控制元素和变体的执行顺序。

#### 4.2 创建和编辑标记对象

在 laserDESK 程序窗口中,使用工作区域可创建和编辑标记对象。标记对象是直观绘制的,其创建和编辑功能可镜像典型图形应用程序的这些对象。用户可创建几何形状和文本。下面是可自由创建的标记对象:

- 开放几何形状: 点、线、圆弧、螺旋、多边形、图 形路径
- 可填充的闭合形状:矩形、圆形、椭圆形、多边 形、图形路径
- 复杂实体:字母数字(文本、日期/时间、序列 号)、条形码

其他标记对象包括像素图像和矢量图形。这些对象需要导入,而不能自由定义。laserDESK 提供了常用图形格式的导入过滤器。

所有标记对象最初都是在 laserDESK 程序窗口的工作 区域内手动创建的。使用鼠标调整几何形状、文本和 条形码在工作区域内的位置。导入像素图像和矢量图 形时,您也可通过对话框指定单独设置。



标记对象创建之后还可进一步编辑:

- 所有标记对象都可以放大、缩小、移动和旋转。
- 另外,还可填充闭合的标记对象。
- 两个或多个标记对象可相互对称地进行安排、均匀 地分布或分组。而且,组可以像单个标记对象一样 进行编辑。
- 还有一个编辑功能可将任何标记对象逐步分解为像 一条线一样小的子元素。您可通过插入或删除单独 的点和/或分解或闭合多边形和图形路径来改变标 记对象的几何形状。您也能以此方式改变所导入的 矢量图形。

编辑方式还有用鼠标手动操纵标记对象或更改图形参数本身。用鼠标编辑特别快。编辑各个图形参数是极为准确的标记对象定义方式。参数将会显示在"属性"窗口中。每种标记类型都有各自的特殊几何属性,因此也有各自对应的一组图形参数。当确定文本和图像的位置、大小、几何形状、填充以及格式时,laserDESK的数学精度可确保极高的准确性。

当编辑标记对象时,工作区域、作业资源管理器和" 属性"窗口中的图形参数将会相互更新。工作区域中 选定的标记对象也会在资源管理器结构树中选定。同 样,在资源管理器结构树中选定的标记对象也会在工 作区域中选定。如果您改变工作区域中的某个标记对 象,其图形参数也会随之更改,反之亦然。



## 4.3 分配标记参数

通过分配标记参数,您可指示激光扫描系统如何处理 各个标记对象,以实现最佳的标记和材料加工。由于 点状图案或条纹图案等标记对象的最佳结果有时需要 特殊处理 (例如,自定义扫描头延迟设置),因此您 可向每个标记对象分配各自的标记参数。

每个标记对象已定义的标记参数始终存储在作业中 (作为单独的参数或标记参数集存储于(本地)作业 库)。因此,您只需向其他标记对象分配标记参数, 而不必每次都重新定义参数。您也可将参数集导出到 (全局)标记库。

全局标记库附随包含至少一个可在打开新作业时导入 其中的默认参数集。如果创建更多参数集,您可将作 业或标记库中的一个参数集定义为新的默认参数集。

创建标记对象后,该标记对象会自动分配有指定为作 业默认标记参数集的参数集。因此,每一个标记对象 从一开始都会分配有标记参数。然后,可通过分配不 同的参数集或者改变各个参数,分别调整每个标记对 象的设置。 如果更改作业所用的某个参数集,这些更改将自动应 用于所有获配此参数集的作业标记对象,但前提是未 同时改变这些标记对象的独立参数。借此方式,可同 时更改多个元素的参数分配。

您可通过"属性"窗口更改标记参数值或属性:

- 标记参数定义激光扫描头的设置。您可定义激光属性(例如,功率、频率、脉冲宽度或激光延迟) 和扫描头属性(例如,标记或跳转速度和扫描器延迟)。
- 对于像素图像,您可定义其他特定于像素图像特性的像素图像参数(例如,像素距离或灰度级别)。

#### 注意

- 您可能需要为各种激光定义不同类型的标记参数。
- 作业或特定标记对象的最佳标记参数很大程度上 取决于激光和要处理的材料。为了确定最佳参 数,可能需要进行标记加工测试和材料加工测 试。
- 有关使用参数集的信息,请参阅使用库。



## 4.4 分配填充参数

填充参数定义填充类型、线距离和轮廓缩减等属性。 正如上述标记参数,为标记对象定义的填充参数也始 终存储在作业中(作为单独的参数或参数集)。这 样,您可直接向其他标记对象进行分配,而不必每次 都重新创建定义。

填充参数的属性和处理 (定义、分配、导出、导入) 与标记参数的完全一致 (见上文)。

注意

有关使用参数集的信息,请参阅使用库。

### 4.5 插入控制元素

要控制和自动化激光标记或材料加工,您可以将各种 控制元素作为控制节点插入作业资源管理器结构树中 的任意位置。此类控制元素可用于更改硬件活动(例 如,开关电动机)或响应硬件状态(例如,电动机的 运动或不活动)。控制元素的实施途径包括字位模式 (数字 I/O)、电压 (模拟输出)、脉冲长度 (脉冲输 出)或延迟/等待期限 (计时器)。变体节点是特殊 类型的控制元素 (见下文)。

控制元素可通过鼠标单击,直接插入作业资源管理器 结构树。您随时可以按需更改它们的位置。"属性"窗 口会显示为每个控制模式定义的值 (例如,位图)。



#### 4.6 创建变体

变体是(主要)作业内的部分作业(子例程)。它们 可以是任何作业序列(因而包含标记对象和控制元 素,但不含进一步的变体)。变体控制节点只能在作 业节点下直接定义。此节点可用于定义此部分作业的 启动条件(输入信号状态)。因此,每个变体都需要 分配一个字位模式。若是在自动模式中发出启动信 号,应用的信号将与变体所定义的字位模式进行比 较。如果相同,则会执行此信号。

如果在某个作业中定义多个变体,则可通过外部控制 信号执行不同序列(例如,用于不同标记操作)。因 此,您不必通过用户界面手动更改作业。

变体可通过单击鼠标来插入。此后,您可像常规作业 那样在变体中创建或插入标记对象或控制元素。使用" 属性"窗口定义变体的位图。

### 4.7 创建符号

常用标记对象和组 (例如,公司徽标)可定义为模板 (称为"符号"),其中包含所有已分配的参数 (见上 文)。每个符号都可指定一个名称。与参数集一样, 符号也可通过库资源管理器进行管理。它们同样存储 在作业中,也可导出到标记库,供常规使用。

使用符号时,"参考符号"(参考对象,非副本)将像 其他标记元素那样插入作业中(见上文)如果更改符 号(即模板),则对应的参考符号也会随之立即更 新。

#### 注意

有关使用符号的信息,请参阅使用库。



#### 4.8 管理作业

创建作业后,您可使用任何名称保存该作业(文件扩展名为".sld")。每个文件只能存储一个作业。

如果作业是在具备 RTC 板的生产 PC 上创建的,则也 可立即运行此作业。如果作业是在非生产 PC 上创建 的,只需将其传输到生产 PC。由于作业可从网络内的 任何点加载,因此可轻松地将作业传输到生产 PC,而 用户可制定对工作最为理想的目录结构。



# 5 执行作业

创建并保存作业后,仅当满足以下条件时才能启动该 作业:

- 所提供的软件狗必须插入 PC 的任何 USB 连接器。
- 必须在 laserDESK 中打开作业 (一次只能打开一个作业)。
- PC 必须具备 SCANLAB RTC 板。 执行作业期间, laserDESK 软件与所有激光扫描 系统组件之间的通信主要通过 RTC 板进行。借助 laserDESK GUI,您可使用 RTC 板的功能同时控 制激光和扫描头以及整合外部控制信号。注意,某 些功能(例如,飞行加工操作)需要激活 RTC 板。扫描头控制(例如,监控功能)的功能范围 也取决于所连接的特定扫描头。RTC 板使用 SL2-100 接口或通过适配器的 XY2-100 接口支持所有 扫描头。
- 必须安装作业所需的任何硬件,而且它们要运行正常。

完全正确执行作业需要满足以下条件:

- 所有必需的激光扫描系统组件必须连接到 PC 或 RTC 板。
- 必须正确地配置、初始化、校准和调整激光扫描系统的组件(见下文)。
- 对于自动模式,外部控制必须正确连接到 RTC 板,以确保输入信号(请参阅"控制元素和变体 ")的正常传输。

通过"激光控制"窗口,您可手动启动作业或将其切 换到自动模式:

- 在手动模式中,整个作业或其变体可通过 laserDESK 用户界面来启动。有时,此模式会很 有帮助,例如,在开发阶段中,当您迭代地确定最 佳标记参数时。在此模式中,只停用了外部启动和 变体选择。其他所有信号均可正常工作。启动和任 何变体选择需以手动方式进行,而信号交换始终通 过全局控制来实现。
- 自动模式适用于实际生产中的作业。在此模式中, 通过外部输入信号(例如,来自控制 PC 的信 号),以独占方式启动和控制作业。随后, laserDESK 用户界面将会切换到只显示信息且不 能执行功能的"视图"用户模式。



## 6 配置硬件参数

安装 laserDESK 之后 (但在首次通过特定激光扫描系 统执行作业之前) 或更换硬件之后:

- 您必须在"硬件配置"中针对激光扫描系统组件 (包括 PC 和 RTC 板)的相应配置设置 laserDESK 硬件参数。
- laserDESK 提供了其他一些用于校准和 / 或调整激 光扫描系统组件的功能。这些功能可通过"硬件" 菜单进行访问。

#### 6.1 设置硬件参数

硬件参数定义所使用的硬件(激光扫描系统和 PC), 这与作业无关。因此,作业本身并不需要变更也能在 具备不同硬件参数的不同设备上执行(标记结果可能 有所差异)。您可通过"硬件配置"中的"硬件设置" 对话框设置硬件参数。它们分为以下类别:

• 硬件设备 用于远程控制(串行连接或 TCP/IP 连接)以及控 制不同电动机类型的参数。

### 注意

远程控制是 laserDESK 标准程序包中不具备的可选功能。

• 加工激光

对于 RTC 初始化,每种要使用的加工激光都需要 具有特殊参数设置的激光定义文件 (XML 格式的 sll 文件)。laserDESK 软件包包含指定激光的激光 定义文件,其中涵盖了大量常见激光类型。要确保 laserDESK 使用的参数设置正确无误,您必须通 过选择字段来挑选激光类型。

对于未指定激光(称为"常规类型"激光),您必须通过"激光向导"("硬件"菜单)创建并保存 sll 文件。

对于不同的激光 类型,您可能需要定义各种参数 (例如激光模式、输出功率、延迟和频率范围)。 除了选择所使用的加工激光之外,设置功率、快门 及延迟等参数也很有帮助。



- 光学
  基本光学设置额外包括图像字段大小。此外,还可
  激活并定义主页位置以及可变多边形延迟的应用。
- 扫描头 [1] 和 [2]

基本系统设置包括校正文件和校准因子。校准因子 的值将从所使用的校正文件中读取。但理论上来 看,这些值就是焦点平面的值。在实际系统中,透 镜将会产生轻微的偏差;正常情况下,表面的焦距 不完全准确。在"校准向导"("硬件"菜单)的 帮助之下,可确定并补偿实际更正因子的轻微偏 差。

对于加工激光和导引激光,可选择或定义校正文件 和校准因子。

此外,还可设置偏移和坐标系旋转角度的参数。

• PC 接口

此处所做的设置是针对 PC 和系统组件之间的接口。

• 飞行加工

值。

如果对旋转对象或线性移动对象的标记 / 材料加工 应用了飞行加工 (POF),则需要设置与所用编码器 相关的参数 (例如,指定线性或旋转作为 POF 类 型以及定义编码器信号的校准因子)。 通过 "POF 校准向导"("硬件"菜单),您可校准 所用的编码器。此过程结束时,将自动采用所需的

## 注意

要使用飞行加工功能,必须在 RTC 板上激活该功能。

 视觉系统 如果视觉系统(由硬件和软件组成)由 laserDESK控制,则可以在此设置系统参数。

其他

IO 端口、varioSCAN 动态聚焦单元、摄像机、伺服器电动机等参数。该程序始终只有一个活动硬件参数集,可通过"硬件配置"中的"硬件设置"对话框对此进行管理。重新启动后,laserDESK 始终使用此"硬件设置"参数集。laserDESK 软件包附随提供了一个硬件参数集。

为了简化对硬件配置的快速更改, laserDESK 让您可 归档不同的系统参数集 (硬件模板)。这些集合将会 列举在"硬件设置"对话框的活动硬件参数集下方。 如有必要 (更换硬件之后),对应的模板可定义为有 效的"硬件设置"硬件参数集。



## 6.2 测试参数设置

像在作业中一样,标记对象也可在"硬件配置"下方 创建,而通过激光扫描系统执行。如此,您可通过执 行标记测试并在必要时修改设置,立即检查"硬件设 置"对话框中定义的参数设置。



## 6.3 补充功能

除了对校准激光扫描系统的上述帮助之外,"硬件"菜 单还提供以下功能 (主要用于测试):

- "手动激光控制"让您可执行与标记无关的激光功 能测试;在此测试中,可针对某些激光参数、扫描
   头的光束位置以及(如果有) varioSCAN 动态聚 焦单元的 z 位置进行设置。
- "激光向导"让您可创建未指定激光类型的激光定 义文件。
- "受支持的激光向导"让您可调整指定激光类型的 参数。
- "校准向导"让您可校准扫描系统。
- 使用"重启"可重置所发生的错误并且重新初始化 激光。
- "RTC IO 服务台"让您可查询和设置 RTC 扩展 1 连接器的 16 输入和 16 输出。例如,您可检查发 出的 I/O 信号是否正确以及 RTC 是否收到了此信 号。
- "电动机控制"可用于手动移动轴。
- "POF 校准向导"让您可定义飞行加工操作的参数 和编码器校准。

- "可变多边形延迟校准"对话框提供了一个为 iDRIVE 扫描系统创建可变多边形延迟的独立校准 曲线的过程。
- "跟踪误差向导"让您可评估 iDRIVE 扫描系统的 扫描头跟踪误差。
- "参数向导"可帮助您查找最适合您应用的参数 集。
- "3D 校准向导"可帮助您计算出适合您 3D 扫描系 统的校正文件。
- "系统信息"让您可查询和查看当前软件与硬件属 性和标记数据以及 iDRIVE 扫描系统的当前配置数 据和返回值。



# 7 使用库

您可按上述方式定义标记、像素图像和填充参数集以 及符号,以此来简化它们在作业内不同位置处的重复 使用。对于作业而言,这些项通常都需要创建,但是 也可直接在标记库中创建。

作业中创建的参数集和符号将自动保存到对应的(本地)作业库。只要没有随后在此处删除这些参数集和符号,它们就会保存在作业文件([作业名称].sld)中。 作业库中的作业参数集和符号无法由另一个作业(直接)使用。而可将它们导出到(上级作业)标记库([标记库名称].sld),再从此处导入另一个作业的作业 库。

该程序的标记库已经包括了默认标记参数集、默认像 素图像参数集和默认填充参数集。(只要未定义其他 项作为默认值)当打开新作业时,这些指定为 "**default>"**的集合将会自动用作作业库中的默认参数 集。作业库中的默认标记参数集将初始分配给所有新 建的标记元素,而默认像素图像参数集则分配给所有 像素图像。而对于填充分配,初始使用的是作业库中 的默认填充参数集。

库资源管理器可用于管理作业和标记库中的参数集和 符号。与作业资源管理器一样,它也有一个结构树, 您可借此创建、复制、重命名、删除、导入或导出数 据集。 使用 "GUI 设置"对话框 (请参阅"用户界面 (GUI)")可指定应管理所用标记库 ([标记库名称].sld) 的目录。您可自由选择路径和文件名。首先,这支持使用网络路径,进而实现自动备份等。其次,可以选择并配置目录,以便专为 laserDESK 用户提供适当的访问授权。

#### 注意

像标记库一样,硬件配置的目录路径也可自由选择。



## 8 特殊功能

#### 注意

大多数特殊功能只有在 laserDESK 高级版中才具 备。必须相应地定义软件狗的配置 (请参阅第5 页)。

#### 8.1 3D 功能

#### 注意

要使用 laserDESK 中的 3D 功能,需要:

- varioSCAN聚焦单元(可将激光束聚焦于z位置)整合在扫描系统中;
- 在 RTC 接口板上激活了 "3D 选项"。

下面是可用的 3D 功能:

#### "Z 焦点控制"控制元素

z 焦点控制元素定义聚焦平面。如果将控制节点插入 作业(请参阅第11"插入控制元素"),其他所有2D 和3D对象将会根据此z偏移值进行定位,而所有z值 与控制节点的z偏移相关。

简单 3D 对象 (3D 螺旋 ...)

除了点对象,目前仅支持一个简单的 3D 对象 (3D 螺 旋)。其引导值将会定义 z 值。

#### 3D 表面上的 2D 标记对象

支持对倾斜平面的处理。倾斜平面的定义基于平面的 常规矢量以及原点的 x、y和 z 偏移。 首先,定义对象,然后将其分配给特定层。然后,在 空间内定义此层中位置的参数。 laserDESK 将自动计 算对象的 z 值。

#### 3D 矢量文件导入

可以导入 3D dxf 文件。 laserDESK 将会创建由带有 x、 y 和 z 坐标的点列表定义的 3D 多边形。



### 8.2 电动机控制轴

laserDESK 可向电动机 (轴) 控制器发出不同用途的 命令,特别是移动或旋转部件。此移动可纳入不同标 记流程之间要执行的作业执行中 (而不会与 PLC 等其 他控制设备交互)。

使用 laserDESK 可以控制两种类型的电机:

\* 完全支持的电机,可以直接选择。必要的系统特定 设置已经在 laserDESK 中实现。所有支持的电机控制 器 (可从列表中选择电机类型)都使用串行接口进行 通信。为此, laserDESK 使用了 PC 的串行接口。

\*通用电机类型,通过一个使用 SCANLAB 定义的命令 集的通用接口类执行。通用电机类型需要一个额外的 DLL,用于执行电机的特定命令和设置。这必须由系 统构建者/用户来编程。

laserDESK 提供两种轴使用方式:

- 每条轴均可使用"电动机控制"进行手动移动 (请参阅第 18 页上的"补充功能")。
- 电动机控制元素可插入作业资源管理器结构树 (请参阅第11页上的"插入控制元素"),以便在 作业执行期间使用轴移动。此节点可定义轴移动的 执行时间点。在此情况下,标记流程将会中断,接 着执行轴移动,然后继续激光流程。

#### 8.3 平铺

如果标记的大小超出激光扫描系统标记区域的维度, 或者整个标记出于某些其他原因(例如,辊上的标 记)而不能一次执行,平铺功能让您可分几步标记工 件。因此,标记对象将分成几个图块。使用电动机等 定位设备,工件可移到几个位置,从而逐步进行标 记。

此外,还可使用条带和圆柱模式,主要用于飞行加 工。



#### 8.4 远程控制

远程控制旨在通过远程控制接口让主控制向 laserDESK发出命令。此控制用于执行和调整对 laserDESK作业的处理(特别是选择要处理的作业、 定义文本内容以及可能的执行启动),而非创建或修 改作业内的图形对象。

使用远程控制时, laserDESK 可用于客户端查询和执行所需操作。因此,运行 laserDESK 的 PC 是服务器,而客户程序是客户端。

laserDESK 的远程控制具有两条可能的电报和数据格 式均相同的连接: 串行连接或采用 TCP/IP 协议的以太 网连接。

"远程控制功能的定义"手册描述了远程控制 (尤其 是其参数、电报语法和命令)。

为了方便与客户程序集成,可提供 DLL。借此,可通 过功能调用来实现远程控制(仅适用于 *Windows*)。



## 9 版本产更新和升级

#### 9.1 版本/功能范围

目前有四种 laserDESK 版本可用:

#### ・标准版

该版本具有创建并执行激光打标和材料加工作业的 所有基本功能。也包括运用参数库,控制节点,以 及校准工具的功能。此外,标准版还可以许多个性 化的图形用户界面调整,提供动态帮助,和实现对 intelliSCAN 的诊断。标准版还包括调整,组合和 复制功能,语言选择,特别的填充排序功能。

• 标准版加远程控制

该软件包比较特别,不仅包含标准版的所有功能和 程序功能,还有远程控制功能。

高级版

高级版包含标准版的所有功能和程序功能。此外, 高级版还能执行一些非常特殊的功能,例如远程控 制、影像控制或 **3D** 支持 (请参阅 第 20 页)。 除这四种版本外,还有一个单独的许可证,客户可使 用该许可证离线创建激光作业,即无需激光加工设 备:

办公版仅用于创建激光作业。办公版本无法进行硬件控制,因此无法执行任何激光作业。对于作业创建,办公版本包含上文所述三个版本的所有必备功能。这样创建的激光作业仅能使用另外的标准版或高级版执行。

laserDESK 软件始终支持所有版本。至于可用的 laserDESK 版本或功能系列,主要取决于 USB 软件狗 的配置(请参阅 第 5 页)。软件狗升级(见下文)可 扩展功能范围(例如从标准版扩展到高级版)。



### 9.2 更新和升级

在以下情况下必须更新或升级 laserDESK:

• 您希望使用软件狗中暂未激活的 laserDESK 程序 功能。

软件狗必须升级至更高版本 (通常要付费)。

- SCANLAB 发布更新的 laserDESK 程序版本 (版本号第三位数字增加表明更新:"版本号 n.n.*n*")。仅需安装新程序版本 (免费)。
- SCANLAB 提供具有新选项的全新 laserDESK 程序版本(版本号第一或第二位数字增加表明升级:"版本号 *n.n.*")。软件(免费)和软件狗(通常要付费)都需要升级。

### 升级软件狗

升级法定软件狗非常简单:

在 laserDESK GUI 中创建一个升级申请文件,(格式 为 XML),申请要包含所使用软件版本的所有重要数据(应用程序数据、软件狗数据、选项)。

将此文件连同升级查询一同发送至 SCANLAB。 SCANLAB 然后会返回一个许可证升级文件。

使用返回的文件执行升级。软件狗将发挥作用,让 laserDESK 软件使用新功能。

#### 安装新的 laserDESK 软件

只需从 SCANLAB 网站 (https://www.scanlab.de/en/products/software-calibration/laserdesk/download)下载新的 laserDESK 软 件(更新或升级),然后安装即可。 如果您安装了软件升级,则您也必须升级法定软件 狗。